Characterization of polycrystalline p-type transparent conducting CuFeO2 thin films prepared by chemical spray pyrolysis technique

JASEM Front Page
Abstract:
Transparent mixed oxide transparent conducting thin films (CuFeO2) have been successfully deposited on glass substrates at 300 oC by spray pyrolysis deposition without any post-deposition annealing. Thickness of the films was varied by changing the proportion of cation’s molar concentrations viz. 0.1:0.1, 0.15:0.15, 0.2:0.2 M. The XRD peak positions of the films confirmed the hexagonal (rhombohedral) CuFeO2 single and polycrystalline phase structure. The surface morphology of CuFeO2 thin film seems relatively smooth and crack free; the EDX spectra confirmed the stoichiometry of the prepared films. The oxidation state of the cations Cu, Fe and the anion O; and their chemical environment were analyzed in an X-ray photoelectron spectrometer. The binding energies of Cu-2p doublet positioned at 932.7 eV and 952.6 eV, along with its satellites represented the existence of Cu2+ in the films. Additional peaks located at binding energies 709.3 and 723.4 eV corresponds to the Fe-2p of the film that dictated the presence of Fe2+ in the compound. The direct band gap of the film infers the presence of an intermediate band in between the band edges due to Fe 3d states. The p-type conductivity and conductivity variations with temperature confirmed the semiconducting nature of the films. The activation energy decreases from 0.483 to 0.438 eV as the thickness of the film increases.

Keywords:P-type semiconductor- XRD – XPS – Optical – Electrical

References:

  1. H.Y. Chen, J.H. Wu, Appl. Surf. Sci. 258 (2012) 4844.
  2. H.F. Jiang, C.Y. Gui, Y.Y. Zhu, D.J. Wu, S.P. Sun, C. Xiong, X.B. Zhu, J. Alloys Compd. 582 (2014) 64.
  3. D.B. Rogers, R.D. Shannon, C.T. Prewitt, J.L. Gillson, Inorg. Chem. 10 (1971) 723.
  4. F.A. Benko, F.P. Koffyberg, J. Phys. Chem. Solids 45 (1984) 57.
  5. J.P. Doumerc, A. Wichainchai, A. Ammar, M. Pouchard, P. Hagenmuller, Mater. Res. Bull. 21 (1986) 745.
  6. B.J. Ingram, T.O. Mason, R. Asahi, K.T. Park, A.J. Freeman, Phys. Rev., B 64 (2001) 155114-1.
  7. G. Thomas, Nature 389 (1997) 907.
  8. M. M. Moharam, M. M. Rashad, E. M. Elsayed, R. M. Abou Shahba , Journal of Materials Science: Materials in Electronics 25 ( 2014) 1798.
  9. D.H. Choi, S.J. Moon, J.S. Hong, S.Y. An, I.-B. Shim, C.S. Kim, Thin Solid Films 517 (2009) 3987.
  10. A. Barnabé, E. Mugnier, L. Presmanes, P. Tailhades, Mater. Lett. 60 (2006) 3468.
  11. E. Mugnier, A. Barnabé, L. Presmanes, P. Tailhades, Thin Solid Films 516 (2008) 1453.
  12. Hong-Ying Chen, Jia-Hao Wu Thin Solid Films 520 (2012) 5029.
  13. Adel H.Omran Alkhayatt,S.M.Thahab,Inass Abdulah Zgair Applied Numerical Mathematics and Scientific Computation Nov(2014)165.
  14. B. Wallbank, I.G. Main, C.E. Johnson, J. Electron Spectrosc. 5 (1) (1974) 259.
  15. K.S. Kim, J. Electron Spectrosc. 3 (3) (1974) 217.
  16. J.F. Watts, J. Wolstenholme, An Introduction to surface analysis by XPS and AES, Wiley, 2003 (Chapter 3.2.5).
  17. Toru Yamashita, Peter Hayes Applied Surface Science 254 (2008) 2441.
  18. S.J. Roosendaal, B. van Asselen, J.W. Elsenaar, A.M. Vredenberg, F.H.P.M. Habraken, Surf. Sci. 442 (1999) 329.
  19. P.C.J. Graat, M.A.J. Somers, Appl. Surf. Sci. 100 (1996) 36.
  20. P. Mills, J.L. Sullivan, J. Phys. D: Appl. Phys. 16 (1983) 723.
  21. M. Muhler, R. Schlo¨gl, G. Ertl, J. Catal. 138 (1992) 413.
  22. F. Parmigiani, P.S. Bagus, G. Pacchioni,Cluster Models for Surface and bulk phenomena, Plenum, New York, 1992, pp. 475.
  23. H.Y. Chen, D.J. Hsu, J. Alloys Compd. 598 (2014) 23.
  24. R. Suresh, V. Ponnuswamy, and R. Mariappan Int. J. Thin Fil. Sci. Tec. 4, No. 1, (2015) 35.
  25. G. Riveros, C. Garín, D. Ramírez, E.A. Dalchiele, R.E. Marotti, C.J. Pereyra, E. Spera, H. Gómez, P. Grez, F. Martín, J.R. Ramos-Barrado Electrochimica Acta 164 (2015) 297.
  26. K.P. Ong, K. Bai, P. Blaha, P. Wu, Chem. Mater. 19 (2007) 634.
  27. X.L. Nie, S.H. Wei, S.B. Zhang, Phys. Rev. Lett. 88 (2002) 066405.
  28. F. A. Benko and F. P. Koffyberg, Mater. Res. Bull. 21 (1986) 753.
  29. K. P. Ong, K. Bai, P. Blaha, and P. Wu, Chem. Mater. 19 (2007) 634.
  30. Hiroki Hiraga, Takayuki Makino, Tomoteru Fukumura, Hongming Weng, and Masashi Kawasaki Physical Review B 84 (2011) 041411
  31. C.G. Read, Y. Park, K.S. Choi, J. Phys. Chem. Lett. 3 (2012) 1872.
  32. A. Derbal, S. Omeiri, A. Bouguelia, M. Trari, Int. J. Hydrogen Energy 33 (2008) 4274
  33. Z.H. Deng, X.D. Fang, S.Z. Wu, W.W. Dong, J.Z. Shao, S.M. Wang, M. Lei, J. Sol–Gel Sci. Technol. 71 (2014) 297.
  34. A. Barnabe, E. Mugnier, L. Presmanes, P. Tailhades, Mater. Lett. 60 (2006) 3468.
  35. F.A. Benko, F.P. Koffyberg, J. Phys. Chem. Solids 48 (1987) 431.
  36. H.Y. Chen, J.H. Wu, Appl. Surf. Sci. 258 (2012) 4844
  37. R.K. Gupta, M. Cavas, A.A. Al-Ghamdi, Z.H. Gafer, F. El-Tantawy, F. Yakuphanoglu, Sol. Energy 92 (2013) 1.
  38. E. Mugnier, A. Barnabé and Ph. Tailhades, Solid State Ionics 177 (2006) 607.
  39. S. Capdeville, P. Alphonse, C. Bonningue, L. Presmanes and P. Tailhades, J. Appl. Phys. 96 (2004) 6142.